Serveur d'exploration Santé et pratique musicale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of practice and experience on the arcuate fasciculus: comparing singers, instrumentalists, and non-musicians.

Identifieur interne : 001486 ( Main/Exploration ); précédent : 001485; suivant : 001487

Effects of practice and experience on the arcuate fasciculus: comparing singers, instrumentalists, and non-musicians.

Auteurs : Gus F. Halwani [États-Unis] ; Psyche Loui ; Theodor Rüber ; Gottfried Schlaug

Source :

RBID : pubmed:21779271

Abstract

Structure and function of the human brain are affected by training in both linguistic and musical domains. Individuals with intensive vocal musical training provide a useful model for investigating neural adaptations of learning in the vocal-motor domain and can be compared with learning in a more general musical domain. Here we confirm general differences in macrostructure (tract volume) and microstructure (fractional anisotropy, FA) of the arcuate fasciculus (AF), a prominent white-matter tract connecting temporal and frontal brain regions, between singers, instrumentalists, and non-musicians. Both groups of musicians differed from non-musicians in having larger tract volume and higher FA values of the right and left AF. The AF was then subdivided in a dorsal (superior) branch connecting the superior temporal gyrus and the inferior frontal gyrus (STG ↔ IFG), and ventral (inferior) branch connecting the middle temporal gyrus and the inferior frontal gyrus (MTG ↔ IFG). Relative to instrumental musicians, singers had a larger tract volume but lower FA values in the left dorsal AF (STG ↔ IFG), and a similar trend in the left ventral AF (MTG ↔ IFG). This between-group comparison controls for the general effects of musical training, although FA was still higher in singers compared to non-musicians. Both musician groups had higher tract volumes in the right dorsal and ventral tracts compared to non-musicians, but did not show a significant difference between each other. Furthermore, in the singers' group, FA in the left dorsal branch of the AF was inversely correlated with the number of years of participants' vocal training. Our findings suggest that long-term vocal-motor training might lead to an increase in volume and microstructural complexity of specific white-matter tracts connecting regions that are fundamental to sound perception, production, and its feedforward and feedback control which can be differentiated from a more general musician effect.

DOI: 10.3389/fpsyg.2011.00156
PubMed: 21779271
PubMed Central: PMC3133864


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effects of practice and experience on the arcuate fasciculus: comparing singers, instrumentalists, and non-musicians.</title>
<author>
<name sortKey="Halwani, Gus F" sort="Halwani, Gus F" uniqKey="Halwani G" first="Gus F" last="Halwani">Gus F. Halwani</name>
<affiliation wicri:level="2">
<nlm:affiliation>Program in Speech and Hearing Bioscience and Technology, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology Cambridge, MA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Program in Speech and Hearing Bioscience and Technology, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology Cambridge, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Loui, Psyche" sort="Loui, Psyche" uniqKey="Loui P" first="Psyche" last="Loui">Psyche Loui</name>
</author>
<author>
<name sortKey="Ruber, Theodor" sort="Ruber, Theodor" uniqKey="Ruber T" first="Theodor" last="Rüber">Theodor Rüber</name>
</author>
<author>
<name sortKey="Schlaug, Gottfried" sort="Schlaug, Gottfried" uniqKey="Schlaug G" first="Gottfried" last="Schlaug">Gottfried Schlaug</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21779271</idno>
<idno type="pmid">21779271</idno>
<idno type="doi">10.3389/fpsyg.2011.00156</idno>
<idno type="pmc">PMC3133864</idno>
<idno type="wicri:Area/Main/Corpus">001425</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001425</idno>
<idno type="wicri:Area/Main/Curation">001425</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001425</idno>
<idno type="wicri:Area/Main/Exploration">001425</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effects of practice and experience on the arcuate fasciculus: comparing singers, instrumentalists, and non-musicians.</title>
<author>
<name sortKey="Halwani, Gus F" sort="Halwani, Gus F" uniqKey="Halwani G" first="Gus F" last="Halwani">Gus F. Halwani</name>
<affiliation wicri:level="2">
<nlm:affiliation>Program in Speech and Hearing Bioscience and Technology, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology Cambridge, MA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Program in Speech and Hearing Bioscience and Technology, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology Cambridge, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Loui, Psyche" sort="Loui, Psyche" uniqKey="Loui P" first="Psyche" last="Loui">Psyche Loui</name>
</author>
<author>
<name sortKey="Ruber, Theodor" sort="Ruber, Theodor" uniqKey="Ruber T" first="Theodor" last="Rüber">Theodor Rüber</name>
</author>
<author>
<name sortKey="Schlaug, Gottfried" sort="Schlaug, Gottfried" uniqKey="Schlaug G" first="Gottfried" last="Schlaug">Gottfried Schlaug</name>
</author>
</analytic>
<series>
<title level="j">Frontiers in psychology</title>
<idno type="eISSN">1664-1078</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Structure and function of the human brain are affected by training in both linguistic and musical domains. Individuals with intensive vocal musical training provide a useful model for investigating neural adaptations of learning in the vocal-motor domain and can be compared with learning in a more general musical domain. Here we confirm general differences in macrostructure (tract volume) and microstructure (fractional anisotropy, FA) of the arcuate fasciculus (AF), a prominent white-matter tract connecting temporal and frontal brain regions, between singers, instrumentalists, and non-musicians. Both groups of musicians differed from non-musicians in having larger tract volume and higher FA values of the right and left AF. The AF was then subdivided in a dorsal (superior) branch connecting the superior temporal gyrus and the inferior frontal gyrus (STG ↔ IFG), and ventral (inferior) branch connecting the middle temporal gyrus and the inferior frontal gyrus (MTG ↔ IFG). Relative to instrumental musicians, singers had a larger tract volume but lower FA values in the left dorsal AF (STG ↔ IFG), and a similar trend in the left ventral AF (MTG ↔ IFG). This between-group comparison controls for the general effects of musical training, although FA was still higher in singers compared to non-musicians. Both musician groups had higher tract volumes in the right dorsal and ventral tracts compared to non-musicians, but did not show a significant difference between each other. Furthermore, in the singers' group, FA in the left dorsal branch of the AF was inversely correlated with the number of years of participants' vocal training. Our findings suggest that long-term vocal-motor training might lead to an increase in volume and microstructural complexity of specific white-matter tracts connecting regions that are fundamental to sound perception, production, and its feedforward and feedback control which can be differentiated from a more general musician effect.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">21779271</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>11</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1664-1078</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>2</Volume>
<PubDate>
<Year>2011</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in psychology</Title>
<ISOAbbreviation>Front Psychol</ISOAbbreviation>
</Journal>
<ArticleTitle>Effects of practice and experience on the arcuate fasciculus: comparing singers, instrumentalists, and non-musicians.</ArticleTitle>
<Pagination>
<MedlinePgn>156</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpsyg.2011.00156</ELocationID>
<Abstract>
<AbstractText>Structure and function of the human brain are affected by training in both linguistic and musical domains. Individuals with intensive vocal musical training provide a useful model for investigating neural adaptations of learning in the vocal-motor domain and can be compared with learning in a more general musical domain. Here we confirm general differences in macrostructure (tract volume) and microstructure (fractional anisotropy, FA) of the arcuate fasciculus (AF), a prominent white-matter tract connecting temporal and frontal brain regions, between singers, instrumentalists, and non-musicians. Both groups of musicians differed from non-musicians in having larger tract volume and higher FA values of the right and left AF. The AF was then subdivided in a dorsal (superior) branch connecting the superior temporal gyrus and the inferior frontal gyrus (STG ↔ IFG), and ventral (inferior) branch connecting the middle temporal gyrus and the inferior frontal gyrus (MTG ↔ IFG). Relative to instrumental musicians, singers had a larger tract volume but lower FA values in the left dorsal AF (STG ↔ IFG), and a similar trend in the left ventral AF (MTG ↔ IFG). This between-group comparison controls for the general effects of musical training, although FA was still higher in singers compared to non-musicians. Both musician groups had higher tract volumes in the right dorsal and ventral tracts compared to non-musicians, but did not show a significant difference between each other. Furthermore, in the singers' group, FA in the left dorsal branch of the AF was inversely correlated with the number of years of participants' vocal training. Our findings suggest that long-term vocal-motor training might lead to an increase in volume and microstructural complexity of specific white-matter tracts connecting regions that are fundamental to sound perception, production, and its feedforward and feedback control which can be differentiated from a more general musician effect.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Halwani</LastName>
<ForeName>Gus F</ForeName>
<Initials>GF</Initials>
<AffiliationInfo>
<Affiliation>Program in Speech and Hearing Bioscience and Technology, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology Cambridge, MA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Loui</LastName>
<ForeName>Psyche</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rüber</LastName>
<ForeName>Theodor</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schlaug</LastName>
<ForeName>Gottfried</ForeName>
<Initials>G</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 DC008796</GrantID>
<Acronym>DC</Acronym>
<Agency>NIDCD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 DC009823</GrantID>
<Acronym>DC</Acronym>
<Agency>NIDCD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 DC000038</GrantID>
<Acronym>DC</Acronym>
<Agency>NIDCD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>07</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Psychol</MedlineTA>
<NlmUniqueID>101550902</NlmUniqueID>
<ISSNLinking>1664-1078</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">arcuate fasciculus</Keyword>
<Keyword MajorTopicYN="N">auditory–motor interactions</Keyword>
<Keyword MajorTopicYN="N">music</Keyword>
<Keyword MajorTopicYN="N">plasticity</Keyword>
<Keyword MajorTopicYN="N">singing</Keyword>
<Keyword MajorTopicYN="N">tractography</Keyword>
<Keyword MajorTopicYN="N">white matter</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>03</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>06</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>7</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>7</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>7</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21779271</ArticleId>
<ArticleId IdType="doi">10.3389/fpsyg.2011.00156</ArticleId>
<ArticleId IdType="pmc">PMC3133864</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Neurosci. 2005 Nov 2;25(44):10167-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16267224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Brain Mapp. 2009 Nov;30(11):3461-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19370766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Neurol. 2006 May;59(5):735-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16634041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2008 May 1;40(4):1871-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18343163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2004;23 Suppl 1:S208-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15501092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Magn Reson Med. 2009 May;61(5):1255-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19253405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscientist. 2010 Oct;16(5):566-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20889966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2010 Jul 1;51(3):943-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20211265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2003 Dec;20(4):2142-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14683718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Magn Reson Med. 2003 Nov;50(5):1077-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14587019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cogn Neurosci. 2005 Oct;17(10):1565-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16269097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurology. 2010 Jan 26;74(4):280-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20101033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Brain Mapp. 2011 Dec;32(12):2064-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21162044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2008 Nov 5;28(45):11435-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18987180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2005 Jun;15(6):854-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15590909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cogn Neurosci. 2011 Apr;23(4):1015-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20515408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2008 Nov;18(11):2471-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18281301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2006 Nov 1;33(2):628-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16956772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2009 Jul;1169:205-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19673782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Magn Reson Med. 2000 Oct;44(4):625-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11025519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cortex. 2008 Sep;44(8):1105-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18619589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Image Anal. 2001 Jun;5(2):143-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11516708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2010 May;20(5):1144-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19692631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2007 Jan 1;34(1):144-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17070705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Magn Reson Imaging. 2008 Oct;28(4):847-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18821626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Neurol. 2005 Jan;57(1):8-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15597383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Apr 23;392(6678):811-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9572139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2011 Mar 15;55(2):500-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21168517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Music Percept. 2010 Apr 1;27(4):287-295</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21152359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pediatr. 2008 Feb;152(2):250-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18206698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2009 Aug 19;29(33):10215-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19692596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2001 May;4(5):540-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11319564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res Bull. 2010 May 31;82(3-4):161-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20433906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Lang. 2006 Mar;96(3):280-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16040108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Magn Reson Imaging. 2003 Sep;21(7):821-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14559348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2007 Jul;8(7):547-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17585307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Future Neurol. 2010 Nov;5(6):797-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21197137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2009 Mar;19(3):712-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18832336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurotherapeutics. 2007 Jul;4(3):316-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17599699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2005 Sep;8(9):1148-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16116456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropsychologia. 2010 Jan;48(2):607-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19896958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Hum Neurosci. 2009;3:76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20161812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2001 Jun;930:281-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11458836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Music Percept. 2008 Apr 1;25(4):315-323</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21197418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Brain Mapp. 2002 Nov;17(3):143-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12391568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2005 Dec;15(12):1848-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15758200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res Cogn Brain Res. 2004 Aug;20(3):363-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15268914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Magn Reson Med. 1999 Dec;42(6):1123-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10571934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2009 Jul;1169:385-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19673813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2009 Mar 11;29(10):3019-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19279238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2007 Apr 1;35(2):501-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17258911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2002 Nov;17(3):1429-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12414282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>NMR Biomed. 1995 Nov-Dec;8(7-8):333-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8739270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2007 Apr 15;35(3):1064-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17320414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Neurol. 1997 Dec;42(6):951-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9403488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 1994 Jan;66(1):259-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8130344</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Loui, Psyche" sort="Loui, Psyche" uniqKey="Loui P" first="Psyche" last="Loui">Psyche Loui</name>
<name sortKey="Ruber, Theodor" sort="Ruber, Theodor" uniqKey="Ruber T" first="Theodor" last="Rüber">Theodor Rüber</name>
<name sortKey="Schlaug, Gottfried" sort="Schlaug, Gottfried" uniqKey="Schlaug G" first="Gottfried" last="Schlaug">Gottfried Schlaug</name>
</noCountry>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Halwani, Gus F" sort="Halwani, Gus F" uniqKey="Halwani G" first="Gus F" last="Halwani">Gus F. Halwani</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SanteMusiqueV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001486 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001486 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SanteMusiqueV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21779271
   |texte=   Effects of practice and experience on the arcuate fasciculus: comparing singers, instrumentalists, and non-musicians.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21779271" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SanteMusiqueV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Mar 8 15:23:44 2021. Site generation: Mon Mar 8 15:23:58 2021